
1. The Birch and Swinnerton-Dyer Conjecture

Main references : [4], [5], [8]. In this section, K is a number field.

1.1. Elliptic curves over Q. Let E/Q be an elliptic curve and recall that
by Mordell’s theorem we have

E(Q) ' E(Q)tors ⊕ Zrk(E/Q),

where |E(Q)tors| <∞ and rk(E/Q) ≥ 0 is an integer.
In this case, E(Q)tors is well understood so that knowing rk(E/Q) com-

pletely characterises E(Q).
Problem: There is no provable method to compute rk(E/Q) in general.
In the mid 1960’s Birch and Swinnerton-Dyer conjectured (based on nu-

merical experiments) that rk(E/Q) could be computed from the L-function
of E/Q. Their rationale went as follows:

Let p - ∆E be a prime. Then Ẽ/Fp is an elliptic curve and denote

Np := |Ẽ(Fp)|,

the number of Fp-rational points on the reduced curve.
Their main idea was that a large rank over Q gives rise to a lot of Q-

rational points, which in turns make Np very large. Following this idea, for
a given number X, Birch and Swinnerton-Dyer looked at∏

p<X

Np

p
,

and conjectured the following:

Conjecture 1.1. There exists a constant CE depending only on E such that∏
p<X

Np

p
∼ CE(logX)rk(E/Q) as X →∞.

Now it is not convenient to study
∏
p<X

Np

p analytically. However for each

p, the value Np is packed up in the L-function of E/Q via Np = p+ 1− ap
since

L(E/Q, s) =
∏
p

1

1− app−s + p−2s+1
.

If we discard all convergence problems, “evaluating” at s = 1 gives

L(E/Q, 1)“ = ”
∏
p

p

Np
,

so that, by the above discussion and assuming analytic continuation to the
whole of C, the value of L(E/Q, s) at s = 1 should contain information
about the rank of E/Q.
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Conjecture 1.2 (BSD1). The L-function L(E/Q, s) extends to an entire
function on C and

L(E/Q, 1) 6= 0⇔ |E(Q)| <∞.
Moreover rk(E/Q) is the order of vanishing of L(E/Q, s) at s = 1.

Their conjecture goes further! Since we are assuming analytic continua-
tion at s = 1, it makes sense to talk about the leading term of the Taylor
expansion of L(E/Q, s) around s = 1.

Conjecture 1.3 (BSD2).

lim
s→1

L(E/Q, s)
(s− 1)rk(E/Q)

=
|X(E/Q)|R(E/Q)ωR

∏
p cp

|E(Q)tors|2
,

where

• X(E/Q) is the Shafarevich-Tate group of E/Q, assuming it is finite
(more on this in Lecture 2),
• R(E/Q) is the regulator of E/Q (more on this in Steffen’s lecture),
• cp is the Tamagawa number of E/Q at the prime p (more on this in

Lecture 3),
• ωR is the real period of E/Q.

Remark 1.4. The real period ωR is defined by∫
E(R)
|dx
y
| = [E(R) : E0(R)]ωR,

where E0(R) denotes the identity component.
! it depends on the choice of differential !

Known results (not comprehensive): For E/Q, Gross-Zagier, Koly-
vagin proved that if ords=1L(E/Q, s) ≤ 1 then rk(E/Q) = ords=1L(E/Q, s).
Under some technical assumptions Skinner-Urban, Wei Zhang proved the
converse, i.e. if rk(E/Q) ≤ 1 then ords=1L(E/Q, s) = rk(E/Q).

1.2. Abelian varieties over number fields. Let A/K be an abelian
variety of dimension d over a number field K. Shortly after Birch and
Swinnerton-Dyer stated their conjecture, Tate generalized it to abelian va-
rieties over number fields (see [3] for a conceptual formulation of BSD 2 via
measure theory).

Conjecture 1.5 (Generalized BSD). The L-function L(A/K, s) extends to
an entire function on C and

1) ords=1L(A/K, s) = rk(A/K),
2)

lim
s→1

L(A/K, s)

(s− 1)rk(A/K)
=

2dr2 |X(A/K)|R(A/K)
∏
v|∞

∫
A(Kv) |ω|v

∏
v-∞ cv|

ω
ωo
v
|v√

|dK |
d|A(K)tors||A∨(K)tors|

,

where
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• r2 is the number of complex places of K,
• dK is the discriminant of K,
• ω is a choice of non-zero global exterior d-form,
• for a place v of K, ωov is the Néron differential for A/Kv,
• A∨/K is the dual variety of A/K.

Remark 1.6. If A/K is principally polarized (say A = E an elliptic curve or
A = J(C) the Jacobian of a curve) then |A(K)tors||A∨(K)tors| = |A(K)tors|2.

Known results: BSD has been numerically verified for some elliptic
curves over number fields in LMFDB data base, Jacobian of genus 2 curves,
and (up to square) for a few Jacobians of higher genus curves (see [6], [10]
for details).

1.3. Consequence of BSD : the parity conjecture. The BSD conjec-
ture has a very interesting consequence for the computation of the parity
of the rank of an abelian variety. This is called the parity conjecture and it
can be derived from BSD in the following way.

Recall that assuming analytic continuation of L(A/K, s) to C, BSD 1
states that rkan(A/K) := ords=1L(A/K, s) = rk(A/K). On the other hand,
the completed L-function L∗(A/K, s) of L(A/K, s) is conjectured to satisfy
the following functional equation (proven for E/Q)

L∗(A/K, s) = wL∗(A/K, 2− s),

where w ∈ {±1} is referred to as the sign in the functional equation.
It follows that:
if w = 1 then L(A/K, s) is (essentially) symmetric around s = 1 so that

its order of vanishing is even,
if w = −1 then L(A/K, s) is (essentially) antisymmetric around s = 1 so

that its order of vanishing is odd, i.e. the parity of rkan(A/K) is given by
the sign in the functional equation:

(−1)rkan(A/K) = w.

Assuming BSD this yields that the parity of the (algebraic) rank rk(A/K)
is given by the sign in the functional equation:

(−1)rk(A/K) = w.

Lastly it is also conjectured (and known for E/Q) that w is equal to the
global root number W of A/K, defined by

W =
∏

v∈MK

Wv,

where Wv denotes the local root number of A/K at the place v (well defined
and computable as a Galois theoretic object).
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Conjecture 1.7 (Parity conjecture). The parity of the (algrebraic) rank
rk(A/K) is given by the global root number of A/K :

(−1)rk(A/K) = W.

Remark 1.8. Even though the parity conjecture can be derived from other
conjectures, its statement is independent of any other conjecture as it relates
well defined objects : the algebraic rank and the global root number.

Example 1.9 (how to make use of the parity conjecture). Consider E/Q :
y2 + y = x3 + x2 − 7x+ 5 with discriminant ∆E = −7 · 13. Computing root
numbers one finds : W∞ = −1,W7 = −1 (split multiplicative reduction),
W13 = −1 (split multiplicative reduction), so that

W = (−1)3 = −1.

Assuming the parity conjecture, one concludes that rk(E/Q) is odd so that
E/Q has at least of point of infinite order (and the associated Diophantine
equation has infinitely many solutions).

1.4. A formula for the parity of the rank. Thanks to the following
result of Cassels, it is possible to compute the parity of rk(E/Q) (assuming
finiteness of X(E/Q), or the parity of rkp(E/Q) without any assumption,
more on this in Lecture 2).

Theorem 1.10 (BSD-invariance under isogeny, Cassels, 1965). Assume
X(E/Q) is finite and let ϕ : E → E′ be an isogeny. Then

|X(E/Q)|R(E/Q)ωR
∏
p cp

|E(Q)tors|2
=
|X(E′/Q)|R(E′/Q)ω′R

∏
p c
′
p

|E′(Q)tors|2

Remark 1.11. This result was shortly generalized to abelian varieties by
Tate (see [7][Theorem 7.3] and subsequent remarks).

Combined with the following lemma, the BSD-invariance under isogeny
result gives a formula for the parity of the rank of E/Q.

Lemma 1.12 (Dokchitser-Dokchitser). Let ϕ : E/Q → E′/Q be a Q-
rational isogeny of degree d. Then

R(E/Q)

R(E′/Q)
= drk(E/Q) ·�Q.

Corollary 1.13. Let ` be a prime and E/Q be an elliptic curve admitting
an isogeny of degree `. Assume that X(E/Q) is finite. Then

(−1)rk(E/Q) = (−1)
ord`(

ω′
R

ωR

∏
p

c′p
cp

)

Proof. It follows from Theorem 1.10 that

R(E/Q)

R(E′/Q)
=
|X(E′/Q)|ω′R

∏
p c
′
p|E(Q)tors|2

|X(E/Q)|ωR
∏
p cp|E′(Q)tors|2

=
ω′R
∏
p c
′
p

ωR
∏
p cp
·�Q.

The result follows from Lemma 1.12. �
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The above result relies heavily on the finiteness of X(E/Q) and on the
fact that if finite, it has square order. In the following lecture, we will explore
X(E/Q) in more detail in order to derive a similar result without assuming
its finiteness. Doing so, we will also give a formula to compute the order,
up to square, of the finite part of X(J/K) for Jacobians of curves.

1.4.1. Exercises.

Exercise 1.14. The Regulator of E/Q is defined as the absolute value of
the determinant of the height pairing (see Steffen’s lecture):

Reg(E/Q) = |det(< Pi, Pj >)i,j |,
where {Pi} is any Z-basis for E(Q)/E(Q)tors.

Use this definition and the hint below to prove Lemma 1.12.
Hint : fix P ∈ E,Q ∈ E′ and denote ϕ∨ the dual isogeny. Then

< ϕ(P ), Q >E′=< P,ϕ∨(Q) >E .

Exercise 1.15. 1) Use Corollary 1.13 (and Sage or Magma) to compute the
parity of the rank of the following elliptic curves:

(1) y2 + xy + y = x3 − 231x− 442 (LMFDB 59450.a1, rank 3)
(2) y2 + y = x3 − 7599x+ 254970 (LMFDB 2601.a1, rank 2)

2) Using BSD2 for E/K, compute the parity of the rank of the elliptic curves
in the isogeny class 4.1-b over Q(

√
89) (choose a 5-isogeny)
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2. Shafarevich-Tate groups

Main references: [5] Chapter X, [9]. In this section, K denotes first a
number field, but becomes a local fields in Proposition 2.23.

2.1. Why does X(E/Q) appear in a formula related to the rank of
E/Q?
The answer to the above question can be found in the proof of the Mordell-

Weil theorem.
Let E/Q be an elliptic curve. For n ≥ 2, we have the following exact

sequence:

0→ E[n]→ E(Q̄)→×n E(Q̄)→ 0,

which yields the long exact sequence
(2.1)
0→ E(Q)[n]→ E(Q)→×n E(Q)→ H1(GQ, E[n])→ H1(GQ, E(Q̄))→×n H1(GQ, E(Q̄))...

It follows that E(Q)/nE(Q) ↪→ H1(GQ, E[n]). In order to prove the Mordell-
Weil theorem, one first proves that E(Q)/nE(Q) is finite by embedding it
into a finite subgroup of H1(GQ, E[n]). One then argues via a descent ar-
gument that the finiteness of E(Q)/nE(Q) implies that E(Q) is finitely
generated.

In order to compute rk(E/Q) via this method, one needs to first compute
generators for E(Q)/nE(Q). Defined as a subgroup of H1(GQ, E(Q̄)), the
elements of X(E/Q) will interfere with the computation of such generators.

2.2. Definition using principal homogenous spaces. Main reference
for this section is [5] Chapter X.

Definition 2.2. A twist of E/Q is a smooth curve C ′/Q that is isomorphic
to E over Q̄, i.e. there exists an isomorphism φQ : C ′ → E.

If C1/Q and C2/Q are twists of E/Q such that C1 'Q C2 then we say
that C1 is equivalent to C2 modulo Q-isomorphisms.

Theorem 2.3. The twists of E/Q, up to Q-isomorphism, are in 1−1 corre-
spondence with the element of H1(GQ, Isom(E))), where Isom(E) denotes

the group of Q-isomorphisms from E to itself.

Remark 2.4. Isom(E) contains Aut(E) the group of automorphisms of E
which fix OE and the translations τP : E → E such that τP (Q) = Q+P for
points P,Q ∈ E(Q).

Proof. Sketch: • Associate to C ′/Q the map ξ : GQ → Isom(E) such that
σ 7→ φσφ−1.
• Check that ξ is a cocycle i.e. ξστ = (ξσ)τξτ , ∀σ, τ ∈ GQ.
• Denote {ξ} the associated cohomology class in H1(GQ, Isom(E))) and

prove that {ξ} is determined by the Q-isomorphism class of C ′ and is inde-
pendent of the choice of φ.
• Prove that the map C ′ 7→ {ξ} is a bijection. �
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We now restrict to the twists of E/Q that arise from the translations
Isom(E) via the above bijection. These are genus 1 curves on which E acts
via an algebraic group action defined over Q (the fact that the action is
defined over Q comes precisely from the correspondence to a translation in
Isom(E)).

Definition 2.5. A principal homogenous space (PHS) for E/Q is a smooth
curve C/K together with a simply transitive algebraic group action of E on
C defined over Q i.e. there exists a morphism µ : C×E → C defined over
Q satisfying

• µ(p,O) = p,∀p ∈ C,
• µ(µ(p, P ), Q) = µ(p, P +Q)∀p ∈ C;P,Q ∈ E,
• ∀p, q ∈ C there is a unique P ∈ E such that µ(p, P ) = q.

The latter property allows us to define a subtraction map on C

ν : C × C → E; p, q 7→ P,

where P is the unique point satisfying µ(p, P ) = Q.

Remark 2.6. When working with PHS’s it is understood that +,− refer
to µ, ν.

Proposition 2.7. Let C/Q be a PHS for E/Q. Fix a point p0 ∈ C and
define a map

θ : E → C;P 7→ p0 + P (= µ(p0, P )).

Then θ is an isomorphism defined over Q(p0). In particular, C/Q is a twist
of E/Q.

Definition 2.8. Two PHSs C/Q and C ′/Q for E/Q are equivalent if there
is an isomorphism θ : C → C ′ defined over Q that is compatible with the

action of E on C and C ′ i.e.

C E

C ′ E

φ

θ τP

φ′

commutes.

The equivalence class containing E/Q acting on itself by translation is
the trivial class.

The collection of equivalence classes of PHS for E/Q is called the Weil-
Châtelet group for E/Q, denoted WC(E/Q).

Remark 2.9. One can define several structures of PHS for E/Q on a single
curve C/Q via the natural action of Aut(E) on WC(E/Q). Let α ∈ Aut(E)
and define {C/Q, µ}α = {C/Q, µ ◦ (1 × α)}. Then {C/Q, µ ◦ (1 × α)} and
{C/Q, µ} are not in the same equivalence class of WC(E/Q) by Definition
2.8.

Proposition 2.10. Let C/Q be a PHS for E/Q. Then C/Q is in the trivial
class if and only if C(Q) is not the empty set.

Proof. This is Proposition 2.7 with p0 ∈ C(Q) (hence θ is a Q-isomorphism).
�



8

Theorem 2.11. There is a natural bijection WC(E/Q) → H1(GQ, E) de-
fined by

{C/Q} 7→ {σ 7→ pσ0 − p0},

for a fixed p0 ∈ C.

Proof. • show that σ 7→ pσ0 − p0 is a cocycle.
• show that two equivalent PHS map to two cohomologous cocycles.
• show that the above map is injective: assume that the cocycles cor-

responding the C/Q and C ′/Q are cohomologous. Prove that for p, p0 ∈
C, p′0 ∈ C ′, P0 ∈ E the map θ : C → C ′; p 7→ p′0 − (p − p0) + P0 is a
Q-isomorphism.
• show that the above map is surjective: let ξ : GQ → E be a 1-cocycle

representing an element in H1(GQ, E). View E as the set of translations in
Isom(E) so that ξ can be viewed as an element of H1(GQ, Isom(E)). By

Theorem 2.3 there exist a curve C/Q and a Q-isomorphism φ : C → E such
that for all σ ∈ GQ, φσ ◦ φ−1 = translation by ξσ. Define a map

µ : C × E → E; (p, P ) 7→ φ−1(φ(p) + P ).

Check that µ is simply transitive, defined over Q and compute the cohomol-
ogy class associated to C/Q to show that it is ξσ. �

Recall from equation 2.1 that we have the Kummer sequence for E/Q:

0→ E(Q)/nE(Q)→ H1(GQ, E[n])→ H1(GQ, E)[n]→ 0.

Understanding Im(E(Q)/nE(Q)) ∈ H1(GQ, E[n]) boils down to under-
standing ker(H1(GQ, E[n]) → H1(GQ, E)). By Theorem 2.11 and Propo-
sition 2.10, this is equivalent to finding rational points on certain genus 1
curve.

This is as difficult as determining the rank of E/Q. On the other hand,
fixing a place v and using Hensel’s Lemma, the same question is more ac-
cessible for E(Qv)/nE(Qv). Namely consider:

0 E(Q)/nE(Q) H1(GQ, E[n]) WC(E/Q)[n] 0

0 E(Qv)/nE(Qv)
∏
vH

1(GQv , E[n])
∏
vWC(E/Qv)[n] 0

δ

Res Res

δv

Definition 2.12. The n-Selmer group of E/Q is the subgroup ofH1(GQ, E[n])
defined by

Seln(E/Q) := ker{H1(GQ, E[n])→
∏
v

WC(E/Qv)},
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The Shafarevich-Tate group of E/Q is the subgroup of WC(E/Q) defined
by

X(E/Q) := ker{WC(E/Q)→
∏
v

WC(E/Qv)}.

Remark 2.13. One proves that Seln(E/Q) is finite and fits in the following
exact sequence

0→ E(Q)/nE(Q)→ Seln(E/Q)→X(E/Q)[n]→ 0.

By definition X(E/Q) can be thought of as the group of PHS for E/Q
that are everywhere locally trivial (i.e. possess a Qv-rational point at all
places v).

2.3. X(E/Q) and p∞-Selmer rank.

Proposition 2.14. The Weil-Chatelet group, and hence X(E/Q), is tor-
sion. In particular, we may write

X(E/Q) =
⊕
p

Xp∞(E/Q),

where for each prime p, Xp∞(E/Q) denotes the p-primary part of X(E/Q)
i.e. the subgroup of elements whose order is a power of p.

Moreover for each n ≥ 2, X(E/Q)[n] is finite. It follows that

Xp∞(E/Q) ' (Qp/Zp)δp ⊕ Tp,

with δp ∈ Z≥0, Tp a finite abelian p-group.

The subgroup ⊕p(Qp/Zp)δp is called the infinitely divisible subgroup of
X(E/Q), denoted Xdiv(E/Q).

Definition 2.15. Fix a pime p and define the p∞-Selmer group as the direct
limit

lim
→n

Selpn(E/Q).

Moreover define the p∞-Selmer rank, denoted rkp(E/Q) as

rkp(E/Q) = rk(E/Q) + δp.

Remark 2.16. The advantage of defining the p∞-Selmer rank comes from
the fact that X(E/Q) is conjectured to be finite. In this case, δp = 0 for all
p and rkp(E/Q) = rk(E/Q).

The key point is that one can reformulate Theorem 1.10 and Lemma 1.12
in terms of Selmer groups and give an unconditional formula for the parity
of rkp(E/Q) (More on this in Lecture 4, also see [8] for a detailed exposition
of this approach).

Recall that to prove Corollary 1.13 we used that if finite, X(E/Q) has
square order. This is true for elliptic curves but not true in general. It comes
from the following pairing on X(E/Q) (and more generally on X(A/K)).
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2.4. Cassels-Tate pairing. Let A/K be an abelian variety over a number
field and denote A∨/K its dual.

Proposition 2.17. There exists a bilinear pairing

Γ : X(A/K)×X(A∨/K)→ Q/Z,
called the Cassels-Tate pairing, whose kernel on each side is exactly Xdiv(A/K)
and Xdiv(A

∨/K) respectively.
In particular if X(A/K) is finite then the Cassels-Tate pairing is non-

degenerate.

Remark 2.18. Consider a principally polarized abelian variety A/K and
let λ : A→ A∨ be a principal polarization. We define

〈., .〉λ : X(A/K)×X(A/K)→ Q/Z,
by

〈a, a′〉λ = 〈a, λa′〉.

2.4.1. Definition of the Cassels-Tate pairing via PHS.

Take a ∈X(A/K) and denote X/K the associated locally trivial PHS for
A/K. Denote by Ksep(X) the function field of X ⊗K Ksep. The following
exact sequence

0→ Ksep× → Ksep(X)× → Ksep(X)×/Ksep× → 0

yields

Br(K) H2(GK ,K
sep(X)×) H2(GK ,K

sep(X)×/Ksep×) 0

0
∏
v Br(Kv)

∏
vH

2(GKv ,K
sep(X)×)

∏
vH

2(GKv ,K
sep(X)×/Ksep×)

Res Res Res

On the other hand from the exact sequence

0→ Ksep(X)×/Ksep× → Div0(X ⊗K Ksep)→ Pic0(X ⊗K Ksep)→ 0

we have

H1(GK , Div
0(X⊗Ksep))→ H1(GK , P ic

0(X⊗KKsep))→ H2(GK ,K
sep(X)×/Ksep×)→ ...

Now over Ksep, A⊗Ksep ' X ⊗Ksep hence Pic0(A⊗Ksep) ' Pic0(X ⊗
Ksep) and one gets a map
(2.19)
H1(GK , A

∨) = H1(GK , P ic
0(A⊗Ksep))→ H2(GK ,K

sep(X)×/Ksep×).

Let a′ ∈X(A∨/K) and denotes b′ its image in H2(GK ,K
sep(X)×/Ksep×)

via the above map. Then b′ lifts to an element f ′ ∈ H2(GK ,K
sep(X)×),

which maps to an elementRes(f ′) ∈
∏
vH

2(GKv ,K
sep(X)×). LastlyRes(f ′)

lifts to (cv) ∈
∏
v Br(Kv) (this can be seen from considering the equivalent

version of (2.19) over local completions. Since a′ represents a locally trivial
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PHS, it maps vertically to 0 in the product of completions, and hence is 0 in∏
vH

2(GKv ,K
sep(X)×/Ksep×)) and we define 〈a, a′〉 = Σvinvv(cv) ∈ Q/Z

(recall 0→ Br(K)→
∏
v Br(Kv)→ Q/Z→ 0.)

Exercise 2.20. Prove that if λ comes from a rational divisor then the above
pairing is alternating.

Proposition 2.21. Let A/K be a principally polarized abelian variety with
principal polarization λ. Assume that X(A/K) is finite. If λ is given by a
rational divisor then |X(A/K)| = �.

Proof. By Exercise 2.20 if λ is given by a rational divisor then the pairing
is alternating. If moreover X(A/K) is finite then it is non-degenerate. The
result follows since a finite abelian group equipped with a bilinear non-
degenerate alternating pairing can be shown to have square order. �

In order to numerically verify BSD (up to square), one needs to compute
whether |X(A/K)| = � or 2�. In case of A = J(C) the Jacobian of a curve
C/K, Poonen and Stoll in [9] Corollary 12, give the following formula:

Definition 2.22. Let C be a curve of genus g over a local field Kv. Then
C is deficient if it has no Kv-rational divisor of degree g − 1.

Proposition 2.23. Let J/K be the Jacobian of a smooth curve C/K and
assume that X(J/K) is finite. Then |X(J/K)| = � if C/K has an even
number of deficient places, and |X(J/K)| = 2� if C/K has an odd number
of deficient places.

The following Proposition gives an explicit criterion for a curve to be
deficient.

Proposition 2.24. Let K/Qp be a finite extension and C/K be a hyperel-
liptic curve of genus g. Denote k the residue field of K. The following are
equivalent:

1) C is deficient over K,
2) C has even genus and has no rational point over any odd degree exten-

sion of K,
3) C has even genus and every component of the special fibre of its mini-

mal regular model has either even multiplicity or a Gk-orbit of even length.

Proof. Remark 1 after Lemma 16 in [9]. �

2.5. Exercises.

Exercise 2.25. This exercise leads you through a 2-descent procedure and
exhibit PHS’s in Sel2(E/Q).

Let E/Q : y2 = (x− α)(x− β)(x− γ) with α, β, γ ∈ Q distinct.

(1) Let P = (x0, y0) with x0 6= α, β, γ.
Prove that the map E(Q)/2E(Q)→ Q×/Q×2×Q×/Q×2×Q×/Q×2,

which sends P 7→ (x0 − α, x0 − β, x0 − γ) is an injective homomor-
phism.
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Note: replace (x0 − α) by (x0 − β)(x0 − γ) if x0 = α etc.. and
O 7→ (1, 1, 1).

(2) Prove that a triple a, b, c with abc ∈ Q×2 lies in the image if and
only if it is in the image of E(Q)[2], or

cz2
3 − α+ γ = az2

1 cz2
3 − β + γ = bz2

2

is soluble with zi ∈ Q×.
Note: -in this case P = (az2

1 + α,
√
abcz1z2z3) 7→ (a, b, c) so that

it is possible to explicitly find points on E via this method.
-Each triple a, b, c defines a PHS as the intersection of the two

quadrics above.

The following exercise yields a version of Corollary 1.13 for abelian vari-
eties without assuming finiteness of X.

Exercise 2.26. Let ϕ : A/K → B/K be an isogeny of abelian varieties
defined over K such that ϕϕ∨ = [p]. Let

Q(ϕ) = | coker(ϕ : A(K)/A(K)tors → B(K)/B(K)tors)|×| ker(ϕ : Xdiv(A/K)→Xdiv(B/K))|.
Show that

Q(ϕ∨)

Q(ϕ)
≡ prkp(A/K) mod Q×2

You may use that Q(ϕ ◦ ϕ∨) = Q(ϕ)Q(ϕ∨).

Exercise 2.27. Prove that if λ comes from a rational divisor then the
Cassels-Tate pairing is alternating.
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3. Tamagawa Numbers

In this section, K denote a finite extension of Qp for some prime p. Some-
times, p is required to be odd.

We now explore another arithmetic invariant of abelian varieties that
appear in BSD2, the Tamagawa number. It is well tabulated for elliptic
curves over number fields, and under some conditions, can be computed for
Jacobians of curves.

Fix a prime p, let K/Qp be a finite extension and A/K be an abelian
variety.

Recall from Adam’s lecture 2 that the group A(K)/A0(K) is finite, where
A0(K) denotes the set of points reducing to the connected component of the
identity of the Neron model of A/K.

Definition 3.1. The Tamagawa number c(A/K) = |A(K)/A0(K)|. Alter-

natively c(A/K) = |Ã/Ã0(k̄)Gal(k̄/k)|, where k denotes the residue field of

K and Ã, Ã0 denote the reduction of the abelian variety and the reduction
of the identity component of the Neron model respectively.

We first look at Tamagawa numbers of elliptic curves over K.

3.1. Elliptic curves. In this case we need to compute E(K)/E0(K) where
E0(K) is defined by the following exact sequence

0→ E1(K)→ E0(K)→π Ẽns(k)→ 0.

Namely, E0(K) denotes the points P ∈ E(K) that reduce to non-singular

points P̃ ∈ Ẽns(k).
Note that the surjectivity of the reduction map π above depends crucially

on the fact that we can use Hensel’s lemma to lift non-singular points.

Example 3.2. Let p > 3.

(1) Consider E/Zp : y2 = x(x − 1)(x − 2). Reducing mod p gives

Ẽ/Fp : ỹ2 = x̃(x̃− 1)(x̃− 2), which defines an elliptic curve over Fp.
In this case Ẽns(Fp) = Ẽ(Fp) so that E0(Qp) = E(Qp) and

c(E/Qp) = 1.
This shows that if E/Qp has good reduction then c(E/Qp) = 1.

This is reassuring since BSD2 involves
∏
p c(E/Qp). This infinite

product now makes sense since it is 1 for all but finitely many p.
(2) Consider E/Zp : y2 = (x + 1)(x − p2)(x + p2). Reducing mod p

gives Ẽ/Fp : ỹ2 = x̃2(x̃+ 1).
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In this case, Ẽ/Fp is a nodal curve with singularity at (0, 0), i.e.

Ẽns(Fp) = Ẽ(Fp) (0, 0) and Hensel’s lemma is inconclusive at (0, 0).
From this model E/Zp, it is not possible to compute E(Qp)/E0(Qp)
because we don’t know whether points reducing to (0, 0) comes from
Qp-points.

To solve the problem of Example 3.2.2 above we need to consider a “bet-
ter” model for E. In particular, this model should be such that only the
non-singular points of its special fiber can be lifted to points over Qp (as
opposed to the node above which may or may not lift to Qp-points). This
is achieved by the minimal regular model of E/Zp.

Proposition 3.3. Let C/Zp be a proper model for E. If C is regular (as a
scheme) then

E(Qp) = C(Zp) = C0(Zp),
where C0 = C {singular points}.

Example 3.4. Continuing on with Example 3.2.2 above, we construct the
special fiber of a minimal regular model for E/Zp.

Assume first that all components
are defined over Fp (this is the case when E has split multiplicative reduc-
tion). By Proposition 3.3, all points P ∈ Γ1,Γ2,Γ3,Γ4 away from their inter-
sections can lift to Qp-points. Moreover, intersection points will not lift to
Qp-points. We entirely determined E(Qp)/E0(Qp), i.e. |E(Qp)/E0(Qp)| =
4.

In the general case, if some components are not defined over Fp, one
needs to consider only components defined over Fp. As Γ1 is defined over
Fp (O maps to it), and since the special fibre as a whole is itself defined
over Fp, the only possibility is for Γ2 and Γ3 to be permuted by Frob. This
is the case of E having non-split multiplicative reduction, and in this case
|E(Qp)/E0(Qp)| = 2.

3.2. Jacobians of curves. In this section we consider a curve C/K and
its Jacobian J . Denote OK the ring of integers of K, k its residue field and
k̄ the algebraic closure of k.

We wish to compute Tamagawa numbers for J and hence we need to
compute |J(K)/J0(K)|. Models for Jacobians are difficult to construct while
on the other hand, models of curves are relatively easy to handle. It would
therefore be preferable to compute Tamagawa numbers of J via the minimal
regular model of C. As we’ve seen in Adam’s second lecture, Theorem 2.30,
it is possible to do so if C is semistable.
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Theorem 3.5. Let C/K be a semistabe curve, C/OK be a minimal regular
model for C and J /OK the Neron model of J . Consider C̄ = C ×OK

k̄ (i.e.
the base change to k̄ of the special fiber of C). Let I = {Γ1, ..,Γn} denote
the irreducible components of C̄ and let di denote their multiplicities.

Define the map α : ZI → ZI by

Γi 7→
∑
j

(Γi.Γj)Γj ,

where Γi.Γj is the intersection number of Γi and Γj, and extend by linearity.
Define the map β : ZI → Z by Γi → di, and extend by linearity.
Then Im(α) ⊆ ker(β) and

J /J 0(k̄) ' ker(β)/ Im(α).

The isomorphism above is equivariant for the action of Gal(k̄/k).

Example 3.6. Let p > 3 and consider C/Qp be the hyperelliptic curve

C : y2 = (x− 2)((x− 1)2 − p2)(x2 − p2).

We have I = {ΓR,Γt1 ,Γt2} and all components have multiplicity 1. Com-
puting intersection numbers one finds: ΓR.Γt1 = ΓR.Γt2 = 2, ΓR.ΓR = −4,
Γt1 .Γt1 = Γt2 .Γt2 = −2 and Γt1 .Γt2 = 0.

It follows that kerβ = {nRΓR +nt1Γt1 +nt2Γt2 | nR +nt1 +nt2 = 0}, and
Im(α) :
[ΓR] = −4ΓR + 2Γt1 + 2Γt2
[Γt1 ] = 2ΓR − 2Γt1
[Γt2 ] = 2ΓR − 2Γt2 .
So that ker(β)/ Im(α) =< Γt1 ,Γt2 | 2Γt1 = 2Γt2 = 0 >' Z/2Z⊕ Z/2Z.
If Γt1 and Γt2 are defined over Fp, this yields c(J/K) = 4, if they are

permuted by Frob then c(J/K) = 2.
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Remark 3.7. For odd semistable places, there exists an algorithm due to
A. Betts which computes Tamagawa numbers of Jacobians of hyperelliptic
curves.

Based on the function RegularModel in Magma, R. VanBommel imple-
mented an algorithm to compute Tamagawa numbers of Jacobians of curves
(it will return a value if Magma is able to compute a regular model).

3.3. Exercises.

Exercise 3.8. Compute the possible Tamagawa numbers of elliptic curves
using the following table.

Note : the numbers in the description of the minimal regular model indi-
cate the multiplicity of the components. In particular a component with
multiplicity higher than 1 is singular.

Exercise 3.9. Let p > 5, n,m > 0 ∈ Z and consider C/Qp be the hyperel-
liptic curve

C : y2 = (x−1)(x−2)(x−3)(x−pn/2)(x+pn/2)(x−4−pm/2)(x−4+pm/2)

Compute the possible Tamagawa numbers of J at p.
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4. Explicit computations of parity of rank

In this section, K is a number field and we consider its completions Kv

at places v.
From what we have seen so far, it is possible to compute some invariants

involved in BSD2 under certain conditions. If a hyperelliptic curve C over a
number field is semistable at all odd places and has good reduction at places
above 2, then we can compute the Tamagawa numbers for its Jacobian. In
this case we can also compute whether the order of its Shafarevich-Tate
group is a square or twice a square by Proposition 2.24. It is not enough
to yet be able to numerically verify BSD2. For more details on how one
can do that, see for example [6] or [10] where verifications up to squares are
performed for higher genus curves.

However, we now know enough to compute the parity of the rank of J
under certain conditions. This last lecture will describe how to do so in the
case of some Jacobians of genus 2 curves.

4.1. parity of rkp(A/K).
In this section we generalize Theorem 1.10 (the invariance of the BSD

quotient under isogenies) to abelian varieties and remove the assumption on
the finiteness of Shafarevich-Tate groups.

Fix p a prime and a number field K.
Let ϕ : A/K → B/K be an isogeny of abelian varieties defined over K

such that ϕϕ∨ = [p]. Recall the following definition (see Exercise 1.15).

Q(ϕ) = | coker(ϕ : A(K)/A(K)tors → B(K)/B(K)tors)|×| ker(ϕ : Xdiv(A/K)→Xdiv(B/K))|.

Proposition 4.1. Keeping notation as above and fixing non-zero global ex-
terior forms ωA, ωB for A,B we have

Q(ϕ∨)

Q(ϕ)
=
|B(K)tors||B∨(K)tors|ΩA

∏
v-∞ c(A/Kv)| ωA

ω0
A,v
|v

|A(K)tors||A∨(K)tors|ΩB
∏
v-∞ c(B/Kv)| ωB

ω0
B,v
|v
|X0(A)[p∞]|
|X0(B)[p∞]|

,

where X0(A/K) denotes X(A/K) modulo its divisible part (hence it is
finite) and

ΩX =
∏
v|∞R

∫
A(Kv)

|ωA| ·
∏
v|∞C

2dimA

∫
A(Kv)

|ωA ∧ ωA|

Proof. Theorem 4.3 in [11] �

Note that Proposition 4.1 combined with Exercise 2.25, which proves that

Q(ϕ∨)

Q(ϕ)
≡ prkp(A/K) mod Q×2,

gives a formula for the parity of rkp(A/K) provided that A admits an isogeny
defined over K.
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Remark 4.2. 1) If both A and B are principally polarized then A ' A∨

and similarly for B. In particular this is the case if A is the Jacobian of a
genus 2 curve admitting a Richelot isogeny.

In this case, if J/K is semistable at odd places (+ some extra conditions
at places above 2), we can compute Tamagawa numbers and the order of
the finite part of the Shafarevich-Tate groups up to square.

To then compute the parity of rk2(J), it remains to compute the Tama-
gawa numbers at places above 2 and the real period contributions.

2) For p odd, Coates, Fukaya, Kato, Sujatha prove that the parity of
rkp(A/K) of an abelian variety admitting a p-cyclic isogeny is given by the
root number of A (plus technical constraints, see [14] Theorem 2.1)

Following this remark, we compute rk2(J/K) for semistable (with ex-
tra constraints at places above 2) Jacobian of genus 2 curves admitting a
Richelot isogeny (degree 4, generalization of a 2-isogeny for elliptic curves).

Let C/K be a genus 2 curve such that its Jacobian J admits a Richelot

isogeny ϕ. Denote Ĵ and Ĉ the isogenous Jacobian and its underlying curve
respectively. In this case Proposition 4.1 and Exercise 2.25 gives

(−1)rk2(J/K) = (−1)ord2
(ΩJ

∏
v-2∞ c(J/Kv)

∏
v|2 c(J/Kv)| ωJ

ω0
J,v
|v|X0(J)[2∞]|

ΩĴ

∏
v-2∞ c(Ĵ/Kv)

∏
v|2 c(Ĵ/Kv)|

ωĴ

ω0
Ĵ,v

|v|X0(Ĵ)[2∞]|
)

4.2. Infinite places. We start with the computation of ord2(ΩJ
ΩĴ

). Thanks

to the following Proposition, it is enough to work with real and complex
roots of C.

Proposition 4.3. Let J/K be a Jacobian admitting a Richelot isogeny ϕ

over a number field K. Let ωĴ be a choice of exterior form for Ĵ and choose
ωJ = ϕ∗ωĴ as an exterior form for J . Then

ΩJ

ΩĴ

=
∏
v|∞

n(Ĵ(Kv))

| ker(ϕ0)|n(J(Kv))
,

where
n(J(Kv)), n(Ĵ(Kv)) denote the number of connected components of J(Kv)

and Ĵ(Kv) respectively,
ϕ0 denote the map induced by ϕ on J(Kv)

0 (restrict the map induced by
ϕ to the connected component of the identity).

Proposition 4.4. Keeping notation as above, we have n(J(R)) = 2n(C(R))−1

if n(C(R)) > 0, and n(J(R)) = 1 otherwise.

Proof. Proposition 3.2.2 and 3.3 in [12] �

Remark 4.5. Exercise 4.7 computes n(Ĵ(Kv)) and | ker(ϕ0)|.
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4.3. 2-adic places. Let K/Q2 be a finite extension. Consider the following
family of curves

F : y2 = G1(x)G2(x)G3(x) = (x2 − (4t1)2)(x2 + t2x+ t3)(x2 + t4x+ t5),

where

t1 ∈ OK , t2 ≡ 1 mod 2, t3−
1

4
≡ 0 mod 2, t4 ≡ −2 mod 8, t5 ≡ 1 mod 8.

Proposition 4.6. Keeping notation as above, suppose that C ∈ F and that
both G2(x) and G3(x) are irreducible in K. Then

(−1)

ord2

∏
v|2

c(Ĵ/Kv)|
ω
Ĵ

ω0
Ĵ,v

|v

c(J/Kv)|
ωJ
ω0
J,v

|v


= 1

Proof. Every curve in F has totally split toric reduction. The Proposition
follows from a result of A. Morgan in the appendix of [13]. �

4.4. Exercises. The first exercise computes n(Ĵ(Kv)) and | ker(ϕ0)|. The
second is an explicit computation of the parity of rk2(J/K).

Exercise 4.7. Let K be a number field. The Jacobian J of a genus 2
curve C/K : y2 = f(x) admits a Richelot isogeny if and only if Gal(f(x)) ⊆
C3

2 o S3. This is equivalent to f(x) admitting the following factorization
over K:

f(x) = f1(x)f2(x)f3(x),

where deg(fi(x)) ≤ 2.
For a fixed such factorization, write αi, βi for the roots of fi(x) and let

Pi = (αi, 0), Qi = (βi, 0) be the corresponding points on C.
Define the kernel of the Richelot isogeny on J to be the following Galois

stable subgroup of 2-torsions:

{O, [P1, Q1], [P2, Q2], [P3, Q3]}.

Write Ĉ : y2 = g(x) = g1(x)g2(x)g3(x) (it is easy to show that Ĉ also
admits such a quadratic factorization).

1) Assume that all quadratic factors of f(x) are individually defined over
K. Give a formula for the number of real roots of g(x) in terms of the roots

of f(x). By Proposition 4.3 this is enough to compute n(Ĵ(Kv)).
Hint: for i = 1, 2, 3 we have

Disc(gi(x)) = (αi+1 − αi+2)(αi+1 − βi+2)(βi+1 − αi+2)(βi+1 − βi+2),

for some non-zero constant c.
2) Prove the following Proposition:

Proposition 4.8. A divisor Di = [Pi, Qi] ∈ kerϕ is in kerϕ0 if and only if
the points Pi, Qi ∈ C satisfy either

i) Pi = Q̄i, or
ii) Pi, Qi lie in the same connected component of C(R).
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Exercise 4.9. Let C/Q : y2 = (x2−16)(x2 +x+ 17
4 )(x2−2x+9). Compute

the parity of rk2(J). Hint : The corresponding curve is given by C ′/Q :
y2 = −131

2 (−3x2 + 19
2 x+ 35

2 )(2x2 − 50x+ 32)(x2 + 81
2 x+ 16).
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